$2\sin {\alpha} \cos {\alpha}$
If $\alpha, \beta$ and $\gamma$ are angles of triangle ABC, then $\cos(\frac{\alpha+\beta}{2})$ will be equal to _______.
$\tan (\frac{3\pi}{2}+\theta)=$______
If $\sin {\beta}= \frac {3}{5}$ then $\cos {2\beta}=$
$\frac{\cos{11^\circ}+\sin11^{\circ}}{\cos{11^\circ}-\sin11^{\circ}}$
$\sin {22.5^{\circ}}\cos {22.5^{\circ}}+\cos {22.5^{\circ}}\sin {22.5^{\circ}}=$
$\frac{3\pi}{2}+10^{\circ}$ lies in:
$2\sin {\frac{P+Q}{2}\cos {\frac{P-Q}{2}}}$
$\sin {\alpha}=\frac {2}{3}$, $\cos {\alpha}=\frac{3}{4}$, $\sin {2\alpha}=?$
$\sin (\theta - 270^\circ)$
$(\sin {x} - \cos {x})^2$
The trigonometric identity $\frac{\sin{\alpha}+\sin{2\alpha}}{1+\cos{\alpha}+\cos{2\alpha}}=$_______.
If $\cos {\theta}=-\frac{\sqrt{3}}{2}$ and the terminal arm of angles in III quadrant. Then $\sin {\theta}=$_____.
Distance between $A(3,8) , B(5,6)$ is ______
$\sin {2\alpha}$ is equal to ____
$\cos {319^\circ}$ is equal to
On simplifying the expansion $\frac{\sin {2\theta}}{1+\cos {2\theta}}$, the results is.
If $r \cos {\theta} =3$, $r \sin {\theta} =4$, then $r=$________
If $ 2\sin {\theta} + \frac{1}{2} \csc{\theta}$ and $\theta=45^{\circ}$, then the value of the given trigonometric identity is:
$\frac {1-\cos {x}}{\sin {x}}=$
$\cos (\alpha +\beta)-\cos(\alpha -\beta)=$_________
The angle $90^{\circ} \pm \theta$ , $180^{\circ} \pm \theta$, $270^{\circ} \pm \theta$, $360^{\circ} \pm \theta$, are the ____ angles,
$\sin {390^\circ}$ is equal to
$\cos (60^{\circ}-30^{\circ}) \neq ?$
$\cos (\theta - 90^{\circ})-\cos (\theta + 90^{\circ})=$________
$\frac{\sin {2\alpha} \cos {\alpha}}{\cos^3 {\alpha}-\cos {\alpha} \sin^2 {\alpha}}$
$\tan (\frac {\pi}{2}+\theta)=?$
$\tan (\frac{\pi}{6}+\frac{\pi}{4})=$
$\sin {3\theta} -\sin {5\theta}$ equals ____.
$\cos {3\alpha}$ equal to:
$1+\cos{2\theta}$ is equal to ______
$\tan {\frac{\alpha}{2}}=$_______
$\cos^2 {3x} - \sin^2 {3x}=$
If $\alpha, \beta, \gamma$ are the angles of a triangle then $\tan (\alpha + \beta) + \tan {\gamma}$
$\cos {48^\circ} +\cos {12^\circ}=?$
$\frac{1-\tan^2 {x}}{1+\tan^2 {x}}=?$
The angle associated with basic angles of the measure $\theta$ a right angle or its multiple are called _________
$\sin (45^{\circ} - 30^{\circ})=?$
$\sin {3\alpha}$ equal to:
$\frac{2 \tan{\theta}}{1-\tan^2 {\theta}}$ is equal to: