Chapter 4: Sequences and Series – MCQs Test (Class 11, Federal Board)

This MCQs test is designed to help Class 11 students grasp the core concepts of Sequences and Series from the National Book Foundation syllabus (Federal Board). It covers arithmetic and geometric sequences, sum formulas, infinite series, and real-world applications—all essential topics for your board exams!

Chapter 4: Sequence and Series | National Book Foundation

January 14, 2026

1. 
$a_{n}=\frac{(-1)^{n+1}}{2^{n}}$, then $a_{6}=?$

2. 
Geometric mean of Two positive numbers a and b

3. 
Arithmetic mean between $2+\sqrt{2}$ and $2-\sqrt{2}$ is:

4. 
How many terms of sequence $18,15,12,....$ are needed to give a sum of 63?

5. 
An arithmetic progression has a first term 12 and a fifth term 18, then the sum of first 25 term is.

6. 
The nth term of sequence $\frac{1}{3},\frac{2}{5},\frac{3}{7},....$ is:

7. 
If $a,A,b$ are in A.P then $2A=?$

8. 
G.Ms between $1$ and $\frac{1}{3}$ is:

9. 
An infinite geometric series is convergent if _____

10. 
Sum of the series $1+3+5+7+9+11+...+n$ terms is:

11. 
The A.M between two numbers a and b is ________

12. 
For an infinite geometric series for which $|r|

13. 
Find the $26^{th}$ terms from the end of A.P : $2,7,12,17,...,222.$

14. 
An arithmetic series $S_{n}$ equals to ____

15. 
For what value of $n$, $\frac{a^n+b^n}{a^{n-1}+b^{n-1}}$ is the A.M between a and b?

16. 
The formula $S_{n}=\frac{a(r^{n}-1)}{r-1}$ is used for sum of a terms of G.P. if ____

17. 
Predict the general term for the sequence $\frac{4}{3},\frac{4}{9},\frac{4}{27},\frac{4}{81},...$

18. 
If $a,b$ are negative and G.M is also negative

19. 
$\sum_{k=1}^{n} k^{2}=?$ or $(1^2+2^2+3^2+...+n^2)=?$

20. 
In the sequence $1,2,2,3,3,3,4,4,4,4,...$ where n-consecutive terms have the value n, the $22^{nd}$ term is:

21. 
If $\frac{1}{a},\frac{1}{b}$ and $\frac{1}{c}$ are in A.P then common difference is equal to_________.

22. 
$\sum_{k=1}^{n} k=?$ or (sum of first n terms)

23. 
$0.1+0.01+0.001+0.0001+....$ the sum is:

24. 
If $\frac{4}{7}$ be the third term of H.P, then third term of A.P is:

25. 
Sum of $n$ terms of an A.P is ____

26. 
Sequence is denoted by______

27. 
The $(n+1)th$ term of an A.P is _______

28. 
The reciprocal of the term of H.P is.....

29. 
If $\frac{1}{a},\frac{1}{b}$ and $\frac{1}{c}$ are in G.P then common ratio is equal to_________

30. 
Sum of the series $\frac{5}{(13)^{1}}+\frac{55}{(13)^{2}}+\frac{555}{(13)^{3}}+\frac{5555}{(13)^{4}}+...$ up to $\infty$ is:

31. 
If $a_{n-2}=3n-11$ then nth term is

32. 
In geometric sequence nth term equal to

33. 
If $a,b,c$ are in G.P and $a>0,b>0,c>0,$ then the reciprocals of $a,b,c$ form ______

34. 
If $a,b,c$ are in A.P, then $3^{a},3^{b},3^{c}$ are in:

35. 
Arithmetic Mean between two numbers $\frac{1}{a}$ and $\frac{1}{b}$ is:

36. 
$\frac{1}{k}, \frac{1}{2k+1}, \frac{1}{4k-1}$ are in H.P then $k=?$

37. 
The general term of the given series $\frac{1}{1.3}+\frac{1}{2.5}+\frac{1}{3.7}+...$ is

38. 
If $y=\frac{2}{3}x+\frac{4}{9}x^2+\frac{8}{27}x^3+....$ then interval of convergence is____

39. 
The sigma notation for the sum $-2+4-6+8$ is:

40. 
$\sum_{k=1}^{n} 1=?$

41. 
$\sum_{k=1}^{3} k^2$ is equal to:

42. 
The next term of G.P. $1,2,4,8,16,...$ is:

43. 
If $a_{n}-a_{n-1}=n+2$, $a_{1}=2$ then $a_{3}=?$

44. 
$\sum_{j=1}^{10} \sum_{i=1}^{15} k =?$

45. 
In $\frac{1}{4.7}+\frac{1}{7.10}+\frac{1}{10.13}+$...., then $n^{th}$ term is:

46. 
What is sum of n term with nth term $a_{n} = 4n+1$

47. 
If the nth term of an A.P is $\frac{1}{2}(3-n)$ then first three terms are _________

48. 
A.M between $\frac{a}{2}$ and $\frac{2}{a}$ is

49. 
$a_{5}$ in G.P $3,6,12,...$ will be _____

50. 
If A,G,H have their usual meanings and 'a' and 'b' are positive distinct real numbers and $G>0$, then:

51. 
$S_{n}=1+2+3+...+n$ can also be shown as_______

52. 
Let $a,b$ be two positive numbers, where $a>b$ and $4\times\,G.M=5\times\,H.M$ for the numbers, the a is:

53. 
The arithmetic mean in the sequence $-7$,_,_,$5$ are

54. 
If $\frac{1}{a},\frac{1}{b}$ and $\frac{1}{c}$ are in A.P then b is equal to_________.

55. 
Which term of $64,60,56,52,...$ is zero?

56. 
$\sum_{k=1}^{10} 3=?$

57. 
The $10^{th}$ term of $\frac{1}{2},\frac{1}{5},\frac{1}{8},...,$ is:

58. 
If $a_{1}$ and $r$ are the first term and common ratio respectively then the $(n+1)^{th}$ term of G.P is________

59. 
$\sum_{k=1}^{n} 5$ is equal to:

60. 
If $\frac{1}{5}, \frac{1}{8}$ are two H.M between $\frac{1}{2}$ and $b$ then be equals to

61. 
The sum $\sum_{r=2}^{\infty} \frac{1}{r^2-1}$ represents:

62. 
An infinite sequence has no __________

63. 
A sequence $a_{n}$ is an arithmetic sequence if $\forall \, n\in\,\mathbb{N}$ and $n>1$:

64. 
Sum of $n$ arithmetic means between a and b is ________

65. 
What is the sum of infinite G.P; $2,\sqrt{2},1,...?$

66. 
$\sum_{k=1}^{n} k^{3}=?$ or $(1^3+2^3+3^3+...+n^3)=?$

67. 
If $x,y,z$ are in H.P. Sequence then value of z is ______

68. 
Find first term of the geometric series, when $S_{n}=30,n=4,r=-2$

69. 
The nth term of an A.P with usual notions is ______

70. 
The series $1+\frac{x}{2}+\frac{x^2}{4}+...$ is convergent if________

1 out of 70
Exit mobile version