1.
Let $A=\begin{bmatrix} 1 & 2 & 3x \\ 2 & 3 & 6x \\ 3 & 5 & 9x \end{bmatrix}$ then $|A|$ is equal to_____
2.
A system of non-homogeneous equation having infinite many solutions can be solving by using:
3.
The solution of the system $a_{1}+b_{1}y=0$ and $a_{2}+b_{2}y=0$ is called _________
4.
A matrix of order $\mathbf{1} \times \mathbf{n}$ is called
5.
For a system of non-homogeneous equations with three variables system will have unique solution if;
6.
The matrix $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 6 \end{bmatrix}$
8.
$\begin{vmatrix} 2 & 3 & 0 \\ 3 & 9 & 6 \\ 2 & 15 & 1 \end{vmatrix}=a\begin{vmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 2 & 5 & 1 \end{vmatrix}$ then $a=$
9.
$A=\begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 1 \\ 4 & 5 & 2 \end{bmatrix}$ then $M_{13}=?$
10.
For a skew-symmetric matrix the diagonal elements must be:
11.
If $AX=B$ represents the system of non-homogeneous linear equation then $X=$________
12.
If two rows of any square matrix are identical, then the value of determinant is ________
13.
If $A=\begin{bmatrix} d & b \\ -c & a \end{bmatrix}$ then $adj(A) =?$
14.
For homogeneous linear equations, system $AX=O$ non-trivial solution is possible if $|A|=$ _______
15.
If A is a non-singular matrix, then $((A)^t)^t=$________
16.
For the square matrix $A$ of order $\mathbf{3} \times \mathbf{3}$ and $|A|=9$; $A_{21}=2$; $A_{22}=3$; $A_{23}=-1$; $a_{21}=1$; $a_{23}=2$, the value of $a_{22}$ is;
17.
The inverse of a unit matrix is ___________
18.
The cofactor of an element $a_{ij}$ denoted by $A_{ij}=$______.
19.
If A is square matrix then which is true.
20.
If the matrix $\begin{bmatrix} \lambda & 4 \\ 1 & 2 \end{bmatrix}$ is singular then $\lambda=?$
21.
The value $A=\begin{vmatrix} 1 & 12 & 25 \\ 0 & 3 & 15 \\ 0 & 0 & 8 \end{vmatrix}=?$
22.
If A is a skew symmetric then $A^2$ will be
23.
If $A$ is a row matrix of order $\mathbf{1} \times \mathbf{n}$ then order of $A^t A$ is:
24.
A square matrix $A=[a_{ij}]$ is lower-triangular matrix if ________
$a_{ij}=0, \forall \, i>j$
$a_{ij}=0, \forall \, i<j$
$a_{ij}\,\neq\,0, \forall \, i<j$
$a_{ij}\,\neq\,0, \forall \, i>j$
None
25.
If two rows of a square matrix A are interchanged then determinant of resulting matrix is
26.
Rank of the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is __________
27.
if $|A|=5$ then $|A^t|=$?
28.
If $A=\begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$ then cofactor of 6 is:
29.
If $\begin{vmatrix} k & 4 \\ 4 & k \end{vmatrix}=0$ then $k=?$
30.
If order of $A$ is $\mathbf{m} \times \mathbf{n}$ and order of $B$ is $\mathbf{n} \times \mathbf{p}$ then order of $AB$ is:
31.
If A is square matrix of order $\mathbf{4} \times \mathbf{3}$ then number of elements in each column of $A$ is
32.
The Rank of the matrix $\begin{bmatrix} 1 & 0 & 3 \end{bmatrix}$ is
33.
If A is a matrix of order $\mathbf{3} \times \mathbf{2}$ then order of $A^{t}A$ is _________
34.
The trivial solution of homogeneous linear equations is;
35.
A square matrix $A=[a_{ij}]$ is upper-triangular matrix if ________
$a_{ij}\,\neq\,0, \forall \, i<j$
$a_{ij}=0, \forall \, i>j$
$a_{ij}=0, \forall \, i=j$
$a_{ij}\,\neq\,0, \forall \, i>j$
None
36.
A is a square matrix then skew matrix is
37.
If $A=\begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 1 \\ 4 & 5 & 2 \end{bmatrix}$ then $M_{13}=$
38.
If a system has a unique solution or infinitely many solutions then the system is called_______
39.
If A is non-singular matrix, $(A^t)^t=$______.
40.
If $A$ is a square matrix of order $3 \times 3$ then $|KA|=?$
41.
If all entries of a row (column) of a square matrix A are zero, then |A| equals ________
42.
If $A$ is a square matrix of order $\mathbf{3} \times \mathbf{3}$ and $|A|=3$ then value of $|adjA|$ is;
43.
If A is skew symmetric then $A^2$ will be
44.
For any non-singular matrix A, $A^{-1}$ is:
45.
If A and B are non-singular matrices, then $(AB)^{-1}$ is equal to:
46.
For non-homogeneous system of equations; the system is inconsistent if;
47.
If the matrix $\begin{bmatrix} x+1 & 8 \\ 1 & x-1 \end{bmatrix}$ is singular then $x=?$
48.
For non-homogeneous system of linear equations, system $AX=B$, solution is possible if _________
49.
If order of $A$ is $\mathbf{m} \times \mathbf{n}$ and order of $B$ is $\mathbf{n} \times \mathbf{p}$ then order of $(AB)^{t}$ is:
50.
For a non-singular matrix A, $(A^{-1})^{-1}=$______
51.
The inverse of a square matrix exists if $A$ is:
52.
If $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ then $\begin{vmatrix} c & d \\ a & b \end{vmatrix}=?$
53.
Transpose of a diagonal Matrix is:
54.
System of homogeneous linear equations has non-trivial solution if:
55.
If $A$ is any matrix then $A$ and $A^t$ are always comfortable for;
56.
Rank of matrix $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$ is
57.
For an element $A_{ij}$ of a square matrix A;
58.
If matrix $A=\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & -1 & 1 \end{bmatrix}$ then the cofactor $A_{32}=?$
59.
If A is non-singular square matrix, then $AA^{-1}$ equals ______
60.
Rank of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is