Boost your exam preparation with Chapter 2: Matrices and Determinants MCQs, specially designed according to the National Book Foundation Class 11 syllabus and the Federal Board exam pattern. These multiple-choice questions cover key concepts such as types of matrices, matrix operations, determinants, inverse of a matrix, and solving linear equations—helping you grasp the fundamentals quickly and effectively for the Federal Board exam.

Chapter 2: Matrices and Determinants | National Book Foundation

June 20, 2025

1. 
Let $A=\begin{bmatrix} 1 & 2 & 3x \\ 2 & 3 & 6x \\ 3 & 5 & 9x \end{bmatrix}$ then $|A|$ is equal to_____

2. 
A system of non-homogeneous equation having infinite many solutions can be solving by using:

3. 
The solution of the system $a_{1}+b_{1}y=0$ and $a_{2}+b_{2}y=0$ is called _________

4. 
A matrix of order $\mathbf{1} \times \mathbf{n}$ is called

5. 
For a system of non-homogeneous equations with three variables system will have unique solution if;

6. 
The matrix $\begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 4 \\ 0 & 0 & 6 \end{bmatrix}$

7. 
$(AB)^{t}=$________:

8. 
$\begin{vmatrix} 2 & 3 & 0 \\ 3 & 9 & 6 \\ 2 & 15 & 1 \end{vmatrix}=a\begin{vmatrix} 2 & 1 & 0 \\ 1 & 1 & 2 \\ 2 & 5 & 1 \end{vmatrix}$ then $a=$

9. 
$A=\begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 1 \\ 4 & 5 & 2 \end{bmatrix}$ then $M_{13}=?$

10. 
For a skew-symmetric matrix the diagonal elements must be:

11. 
If $AX=B$ represents the system of non-homogeneous linear equation then $X=$________

12. 
If two rows of any square matrix are identical, then the value of determinant is ________

13. 
If $A=\begin{bmatrix} d & b \\ -c & a \end{bmatrix}$ then $adj(A) =?$

14. 
For homogeneous linear equations, system $AX=O$ non-trivial solution is possible if $|A|=$ _______

15. 
If A is a non-singular matrix, then $((A)^t)^t=$________

16. 
For the square matrix $A$ of order $\mathbf{3} \times \mathbf{3}$ and $|A|=9$; $A_{21}=2$; $A_{22}=3$; $A_{23}=-1$; $a_{21}=1$; $a_{23}=2$, the value of $a_{22}$ is;

17. 
The inverse of a unit matrix is ___________

18. 
The cofactor of an element $a_{ij}$ denoted by $A_{ij}=$______.

19. 
If A is square matrix then which is true.

20. 
If the matrix $\begin{bmatrix} \lambda & 4 \\ 1 & 2 \end{bmatrix}$ is singular then $\lambda=?$

21. 
The value $A=\begin{vmatrix} 1 & 12 & 25 \\ 0 & 3 & 15 \\ 0 & 0 & 8 \end{vmatrix}=?$

22. 
If A is a skew symmetric then $A^2$ will be

23. 
If $A$ is a row matrix of order $\mathbf{1} \times \mathbf{n}$ then order of $A^t A$ is:

24. 
A square matrix $A=[a_{ij}]$ is lower-triangular matrix if ________

25. 
If two rows of a square matrix A are interchanged then determinant of resulting matrix is

26. 
Rank of the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ is __________

27. 
if $|A|=5$ then $|A^t|=$?

28. 
If $A=\begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$ then cofactor of 6 is:

29. 
If $\begin{vmatrix} k & 4 \\ 4 & k \end{vmatrix}=0$ then $k=?$

30. 
If order of $A$ is $\mathbf{m} \times \mathbf{n}$ and order of $B$ is $\mathbf{n} \times \mathbf{p}$ then order of $AB$ is:

31. 
If A is square matrix of order $\mathbf{4} \times \mathbf{3}$ then number of elements in each column of $A$ is

32. 
The Rank of the matrix $\begin{bmatrix} 1 & 0 & 3 \end{bmatrix}$ is

33. 
If A is a matrix of order $\mathbf{3} \times \mathbf{2}$ then order of $A^{t}A$ is _________

34. 
The trivial solution of homogeneous linear equations is;

35. 
A square matrix $A=[a_{ij}]$ is upper-triangular matrix if ________

36. 
A is a square matrix then skew matrix is

37. 
If $A=\begin{bmatrix} 1 & -2 & 3 \\ 0 & 0 & 1 \\ 4 & 5 & 2 \end{bmatrix}$ then $M_{13}=$

38. 
If a system has a unique solution or infinitely many solutions then the system is called_______

39. 
If A is non-singular matrix, $(A^t)^t=$______.

40. 
If $A$ is a square matrix of order $3 \times 3$ then $|KA|=?$

41. 
If all entries of a row (column) of a square matrix A are zero, then |A| equals ________

42. 
If $A$ is a square matrix of order $\mathbf{3} \times \mathbf{3}$ and $|A|=3$ then value of $|adjA|$ is;

43. 
If A is skew symmetric then $A^2$ will be

44. 
For any non-singular matrix A, $A^{-1}$ is:

45. 
If A and B are non-singular matrices, then $(AB)^{-1}$ is equal to:

46. 
For non-homogeneous system of equations; the system is inconsistent if;

47. 
If the matrix $\begin{bmatrix} x+1 & 8 \\ 1 & x-1 \end{bmatrix}$ is singular then $x=?$

48. 
For non-homogeneous system of linear equations, system $AX=B$, solution is possible if _________

49. 
If order of $A$ is $\mathbf{m} \times \mathbf{n}$ and order of $B$ is $\mathbf{n} \times \mathbf{p}$ then order of $(AB)^{t}$ is:

50. 
For a non-singular matrix A, $(A^{-1})^{-1}=$______

51. 
The inverse of a square matrix exists if $A$ is:

52. 
If $\begin{vmatrix} a & b \\ c & d \end{vmatrix}$ then $\begin{vmatrix} c & d \\ a & b \end{vmatrix}=?$

53. 
Transpose of a diagonal Matrix is:

54. 
System of homogeneous linear equations has non-trivial solution if:

55. 
If $A$ is any matrix then $A$ and $A^t$ are always comfortable for;

56. 
Rank of matrix $\begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}$ is

57. 
For an element $A_{ij}$ of a square matrix A;

58. 
If matrix $A=\begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & -1 & 1 \end{bmatrix}$ then the cofactor $A_{32}=?$

59. 
If A is non-singular square matrix, then $AA^{-1}$ equals ______

60. 
Rank of the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ is


Exit mobile version