$\{1, -1\}$ is closed with respect to;
The conjugate of $\frac{2+3i}{-i+1}=?$
Find $(\overline{z})^2$ if $z=2\sqrt{3}i$
If $Z_{1}=3-6i \, , Z_{2}=4+5i$ the $Z_{1}Z_{2}=?$
If $Z=(a,b)$ then multiplicative inverse of $Z$ is
Set of even prime natural numbers is;
Find the real part in $(\cos{\theta}-i\sin{\theta})^2$, for $\theta=45^o$
If $Z=x+iy$, then $Z^2=|Z|^2$ if
$2\sqrt{-9}\, \times\, \sqrt{-16}=?$
Find the imaginary part of $(2+3i)^3$=?
$1>-1\,\Rightarrow\,-3>-5$, this property is called
The value of $(3+2i)^3$ is
$|\frac{1+i}{1+\frac{1}{i}}|=?$
If $\frac{Z_1}{Z_2}$ is purely imaginary then $|\frac{Z_1+Z_2}{Z_1-Z_2}|$=?
If $Z\, \in\, \mathbb{C}$ the $\overline{Z_1+Z_2}=?$
If $\frac{a}{b}=\frac{c}{d}$ then $\frac{a+b}{a-b}=\frac{c+d}{c-d}$ represents __________ Property.
$(-1+\sqrt{-3})^4+(-1-\sqrt{-3})^4=?$
$i$ expressed in the form of coordinates is;
Real Component of $(4-i)^2$ is:
$(\frac{1}{2}+\frac{i\sqrt{3}}{2})^6=?$
Additive inverse of $2+\sqrt{3}$ is ______
Which of the following is field?
Which one of the following is the real part of the complex number: $6(2-3i)$?
Real part of $(2-3i)^6$ is;
$\mathbb{C}$ has no identity with respect to $+$ other than _____.
The modulus of the complex number $1+i\tan{\alpha}$=?
If $Z$ is a complex number then the minimum value of $|Z|+|Z-1|$ is _________
What is the area of a rectangular room with length of $5-3i$ and width of $2i$?
In $n$ is any positive integer then the value of $\frac{i^{4n+1}-i^{4n-1}}{2}=?$
If $a\,\in\,\mathbb{R}$ then multiplicative inverse of $a$ is
If $\cos{\theta}+i\sin{\theta}$, then $\frac{1}{Z}$=?
If $a$ and $b$ are two non negative numbers such that $a>b$, then: $\frac{\frac{1}{a}-\frac{1}{b}}{\frac{1}{a}+\frac{1}{b}}$ is:
If $'a'$ and $'b'$ are real numbers then $a+b$ is a real no. This law is called
Let $a,b,c,d\,\in\,\mathbb{R}$ then $a=b$ and $c=d$ $\Rightarrow$
The set of rational numbers between two real numbers is _______
If $Z=\frac{2+7i}{2-8i}$, then $Z=\frac{2-7i}{2+8i}$=?
The smallest positive integer "k" for which $(\frac{1+i}{1-i})^k=1$ is;
Additive inverse of a complex number $(a, b)$ is written as:
If $a>b$, then according to addition properties of inequalities $a+c$ ______ $c+b$
If $(\cos{\theta}+i\sin{\theta})^2=x-iy$ then $x^2+y^2=?$
Find the multiplicative inverse of complex number $z=5+i$
Additive identity of complex numbers
The polar coordinates of a point are $(2, 319)$ then the Cartesian coordinates
$0.\overline{3575}$ is_______
$\frac{\sqrt{18}}{\sqrt{72}}$ is;
Conjugate of $(-3, 4)$ is
If $Z_{1}=(1,0) \, , Z_{2}=(2,3)$ the $Z_{1}Z_{2}=?$
The multiplicative inverse of $\sqrt{7}$ is ________
If Z=$a+b$, then $\overline{Z}=?$
The value of $i^{-29}$ is
$(\frac{1-i}{1+i})^{100}=x+iy$ then:
If $Z_{1}=(x_{1} , y_{1}) \, , Z_{2}=(x_{2} , y_{2})$ where $Z_{1}\, ,\, Z{2}\,\in\,\mathbb{C}$ then $Z_{1}+Z_{2}=?$
Associative property of Multiplication is applicable on:
For De Moivre's Theorem, $n$ belongs to which of the following sets?
The multiplicative inverse of $1-3i$ is
Multiplicative inverse of a non-zero element $a\,\in\,Z$ is ____
Additive inverse of $(3,3)$ in $\mathbb{C}$ is
The $\{x\,\in\,R, x^2+10=0\}$ is______
If $Z=4+6i^2$ then $|Z| =?$
Modulus of $i$ is equal to:
If $a>b$, then $ax>bx$, when $x$
The absolute value of $z=\frac{1+i}{3-i}$ is: