Welcome to your Entry Test Preparation (ECAT) Math Mock Test 2 The sum of 3 A.Ms between 5 and 11; 12 24 34 25 None Find the average of first 50 whole numbers. None 24.5 23 25 None Which one is in range of $f(x)=\frac{2}{3} \sin{x} ?$ $\frac{\pi}{2}$ 1 0 $\pi$ None None The center and radius of circle $x^2 + y^2 -6x + 10y -15 = 0$; $(5, -3), 7$ $(-5, -3), 7$ $(3, -5), 7$ $(3, -5), 49$ None The value of $(1 + i)^4 (1 + \frac{1}{i})^4$ equals to: $16$ $2$ $-16$ $15$ None The value of $\vec{i}\cdot[(\vec{k}\times\vec{j})\cdot(\vec{i}\times\vec{k})]$ is; Not Possible 1 4 2 None Term independent of $x$ in the expansion of $(2x+\frac{1}{x})^4$ is; None such term exists 24 32 64 None Number of real roots $x^2 + 4x + 6 = 0$ are; 0 1 3 2 None The middle term in the expansion of $(1+\frac{x}{2})^{20}$ is; None $11th$ $22th$ $33th$ None When $y=p$ where $p$ is the distance from origin, then slope of $y$ is; 1 0 $\infty$ None None The eccentricity of the hyperbola $x^2 - y^2 =1$ is; $e>1$ $e=1$ $e=\infty$ $e=\sqrt{2}$ None If the vertices of a triangle are $A(0, 0)$ , $B(4, 3)$ , $C(3, 0)$ then centroid is; $(1.50, 3.50)$ $(2.33, 1)$ $(0, 0)$ $(3.50, 2.50)$ None $\tan^{-1}(x) + \tan^{-1}(\frac{1}{x}) =?$ 1 None $\frac{\pi}{2}$ 0 None Bisma's Salary was reduced by $25\%$. Percentage increase to be effected to bring the salary to original level is; $31.3\%$ $32.3\%$ $30.3\%$ $33.3\%$ None Direction of Qibla can be determined by; Spherical Trigonometry none Plane Geometry Solid Geometry None Which of the following is greater? $\frac{1}{1001} - \frac{1}{1000}$ $\frac{1}{1002} - \frac{1}{1001}$ $\frac{1}{1000} - \frac{1}{999}$ $\frac{1}{999} - \frac{1}{1000}$ None $\log_{10}(0.01)=?$ $-3$ $-1$ None $-2$ None The sides of a triangle are $7, 4\sqrt{3}, \sqrt{13}$ . Then smallest angle would be; $15^\circ$ $20^\circ$ $45^\circ$ $30^\circ$ None The graph of $x=-16y^2$ opens towards; Right Left Up Down None If m, n are the roots of the equation $x^2 + 5x + 6 = 0$, then value of $m^2 + n^2$ is; 36 13 14 -13 None The line $y = mx + c ,$ tangent to parabola $y^2 =x $ if; $ m = 2$ $m = \frac{1}{4}$ $m = \frac{1}{2}$ $m = -\frac{1}{3}$ None If $2, x, 6$ are in G. P, then value of $x$ is $\sqrt{2}$ $-2\sqrt{3}$ None of these $\sqrt{6}$ None $\lim_{{x \to \infty}}\frac{3x^2 - 1}{4 - 2x^2} =\,?$ $1$ $-\frac{3}{2}$ $\frac{3}{4}$ $\infty$ None Which one is monoid? None of these $(N, \cdot)$ $(E, \cdot)$ $(N, +)$ None Which one is greater? None of these $\log_{x}(2)$ $2^x$ both are equal None If $\sin{x} + \cos{x} = 0$ then $x=?$ $\{\frac{\pi}{4} + n\pi \}$ $\{\frac{3\pi}{4} + n\pi \}$ $\{\frac{5\pi}{4} + 2n\pi \}$ $\{\frac{\pi}{4} + 2n\pi \}$ None $\sum_{k=1}^{98} (\omega^k) =\,?$ 0 $\omega$ $\omega^2$ -1 None None The number of points of intersection of the circle $x^2 + y^2 =7$ and the hyperbola $x^2 - y^2 =1$ 2 1 4 5 None Which of the following is right order? $2^{\frac{1}{4}}>3^{\frac{1}{2}}>4^{\frac{1}{2}}$ $4^{\frac{1}{3}}>3^{\frac{1}{4}}>2^{\frac{1}{5}}$ $2^{\frac{1}{4}}<4^{\frac{1}{5}}<3^{\frac{1}{3}}$ $2^{\frac{1}{4}}>3^{\frac{1}{3}}>4^{\frac{1}{5}}$ None $x^2 -5xy + 4y^2$ is made from which of the following pairs? None $(x + y)(x - 4y)$ $(x + 5y)(x - 4y)$ $(x - y)(x - 4y)$ None $\lim_{n \to \infty} \frac{n^3 + 4n}{4 - 3n^2} =?$ 0 $\infty$ $-\frac{1}{3}$ $-3$ None If one root of the equation $3x^2 + 13x + k = 0$ is reciprocal of the other then $k=?$ 3 5 $\frac{1}{5}$ $-5$ None Term independent of $x$ in the expansion of $(2x+\frac{1}{x})^3$ is; No such term exists 2 6 1 None Value of A and B in equation $\frac{x}{(x+3)(x+2)} = \frac{A}{(x+3)} + \frac{B}{(x+2)}$ respectively; $-3, 2$ $-3, -2$ $3, -2$ $-2, 3$ None For $1 < n < 5$ , which is true? $n^2 > 5n$ $n^2 = 5n$ None $n^2 < 5n$ None H. M between $\frac{1}{2} and \frac{1}{3} $ is; $\frac{7}{5}$ $\frac{2}{5}$ $\frac{1}{5}$ $\frac{5}{4}$ None $\sin({\cos^{-1}{\frac{5}{4}}})=?$ $\frac{5}{6}$ $\frac{3}{5}$ $-\frac{3}{5}$ Cannot be determine None If $n$ is divisble by $5$ the remainder is 3. If $3n$ is divisible by $5$ then the remainder is; 2 3 4 5 None Time's up